Question		Answer	Mark	Guidance
1	(a)	Method 1: 100\% OR (only) one product OR no waste product OR addition (reaction) Method 2: < 100\% AND two products OR (also) produces NaBr OR (There is a) waste product OR substitution (reaction) \checkmark	2	ALLOW co-product or by-product for waste product For '< 100\%' ALLOW not 100\% OR method 2 has a low(er) atom economy (compared to method 1) IGNORE produces $\mathrm{Br}^{-} / \mathrm{Na}^{+}$ DO NOT ALLOW incorrect waste products e.g. $\mathrm{Br}_{2}, \mathrm{HBr}, \mathrm{Br}$, Na ALLOW correctly calculated value of 42 or 41.8 up to calculator value of 41.83154324 correctly rounded for second mark DO NOT ALLOW incorrect values for the atom economy of method 2. ALLOW ONLY 1 mark for a statement that both methods have 100% atom economy.
	(b)	Acid \checkmark	1	ALLOW H^{+}/ named mineral acid / $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{3} \mathrm{PO}_{4}$ DO NOT ALLOW 'weak acid' e.g. ethanoic acid IGNORE pressure IGNORE temperature

Question		Answer	Mark	Guidance
(c)	(i)	(Average enthalpy change) when one mole of bonds \checkmark of (gaseous covalent) bonds is broken \checkmark	2	IGNORE energy required OR energy released DO NOT ALLOW bonds formed
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change $=\mathbf{- 4 2}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks IF enthalpy change $=+42\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks (Energy for bonds broken) $=5538(\mathrm{~kJ}) \checkmark$ $($ Energy for bonds made $)=5580(\mathrm{~kJ}) \checkmark$ $\Delta H_{\mathrm{r}}=-42\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \checkmark$	3	IF there is an alternative answer, check to see if there is any ECF credit possible. two common incorrect answers are: -970 ($\mathrm{kJ} \mathrm{mol}^{-1}$) award 2 marks $+970\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 1 mark IGNORE signs ALLOW 1076 (bonds broken); 1118 (bonds made) Correct sign required ALLOW ECF for bonds broken - bonds made IF at least one molar ratio is used e.g. $8 \times \mathrm{C}-\mathrm{H}$

Ques	Answer	Mark	Guidance
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF mass = 8.21 (g) award 3 marks Actual $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right) \text { produced }=\frac{3.552}{74}=0.048(\mathrm{~mol}) \checkmark$ theoretical $n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}\right)=n\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right)=0.048 \times \frac{100}{80}=0.06(\mathrm{~mol}) \checkmark$ Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}=0.06 \times 136.9=8.21(\mathrm{~g}) \checkmark$ 3 SF required	3	ALLOW ECF at each stage ALLOW expected mass $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}=3.552 \times \frac{100}{80}=4.44(\mathrm{~g})$ ALLOW Mass $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ reacted $=0.048 \times 136.9=6.5712(\mathrm{~g})$ ALLOW Mass of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ used $=6.5712 \times \frac{100}{80}=8.21(\mathrm{~g})$ DO NOT ALLOW 8.22 (from use of 137 as M_{r} of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$)
	Total	11	

Question			Answer	Mark	Guidance
2	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta \boldsymbol{H}_{\mathrm{c}}=\mathbf{- 2 2 6 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 4 marks IF $\Delta H_{c}=(+) 2260\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks (incorrect sign) IF $\Delta H_{c}=(\pm) 2257(.2)\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks (not 3 sf) Moles Amount, $n, \mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ calculated correctly $=0.0175$ (mol) Energy q calculated correctly $=39501$ (J) OR 39.5(01) (kJ) \checkmark Calculating $\Delta \mathrm{H}$ correctly calculates $\Delta \mathrm{H}^{\text {in }} \mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs \checkmark Rounding and Sign calculated value of $\Delta \mathrm{H}$ rounded to 3 sig. fig. with minus sign \checkmark	4	Note: $q=180 \times 4.18 \times 52.5$ ALLOW 39501 OR correctly rounded to 3 sig. fig. (J) IGNORE sign IGNORE working Note: from 39501 J and $0.0175 \mathrm{~mol} \Delta \mathrm{H}=(-) 2257.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n Final answer must have correct sign and three sig figs
		(ii)	ANY TWO FROM THE FOLLOWING incomplete combustion non-standard conditions evaporation of alcohol/water specific heat capacity of beaker/apparatus	2	IGNORE heat loss (in question) ALLOW burns incompletely IGNORE incomplete reaction

Question		Answer	Mark	Guidance
(b)	(i)	$5 \mathrm{C}(\mathrm{s})+6 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}{ }_{5} \mathrm{H}_{12} \mathrm{O}(\mathrm{I}) \checkmark$	1	Balancing numbers AND species AND states all required DO NOT ALLOW multiples of this equation
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change $=\mathbf{- 3 3 2 0}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ award 3 marks IF enthalpy change $=(+) 3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 2 marks Working for CO_{2} AND $\mathrm{H}_{2} \mathrm{O}$ seen anywhere $\begin{aligned} & 5 \times(-) 3940 \text { AND } 6 \times(-) 286 \\ & \text { OR (-)1970 AND } \\ & \text { OR (-)3686 } \checkmark \quad(-) 1716 \end{aligned}$ Calculates ΔH_{c} A further 2 marks for correct answer AND correct sign $\begin{aligned} & =5 \times-394+6 \times-286--366 \\ & =-3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right) \vee \checkmark \end{aligned}$ A further 1 mark for correct answer AND incorrect or no sign $=(+) 3320\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ Cycle wrong way around: $-366-(5 \times-394+6 \times-286)$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 2 marks for $-1744 \text { OR -1890 OR -314 OR -4052 }$ Award 1 mark for 1744 OR 1890 OR 314 OR 4052

Question		Answer	Mark	Guidance
(c)		QWC: Evidence of the IR absorption at $1720\left(\mathrm{~cm}^{-1}\right)$ for presence of $\mathrm{C}=\mathrm{O} /$ carbonyl group \checkmark QWC: No carboxylic acid OH absorption in IR OR no peak between 2500-3300 cm^{-1} AND so \mathbf{J} is a secondary alcohol OR so K is a ketone \checkmark Alcohol J Compound K Structure of a carbonyl compound that could be obtained from alcohol J \checkmark Equation Balanced equation for conversion of \mathbf{J} to $\mathbf{K} \checkmark$ e. $\mathrm{CH}_{3} \mathrm{CHOHCH}\left(\mathrm{CH}_{3}\right)_{2}+[\mathrm{O}] \longrightarrow \mathrm{CH}_{3} \mathrm{COCH}\left(\mathrm{CH}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit BOTH IR at $\sim 1720\left(\mathrm{~cm}^{-1}\right)$ AND C=O required ALLOW ranges from Data Sheet, i.e. $\mathrm{C}=\mathrm{O}$ within range $1640-1750 \mathrm{~cm}^{-1}$; IGNORE any reference to C-O absorption For structures of \mathbf{J} and \mathbf{K}, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above IGNORE any names given for \mathbf{J} and \mathbf{K} ALLOW 1 mark for the structure of an alcohol with the molecular formula $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$ DO NOT ALLOW pentan-1-ol (primary and unbranched) or 2-methylbutan-2-ol (branched but tertiary) DO NOT ALLOW any marks for \mathbf{J} and \mathbf{K} if more than one structure is given for \mathbf{J} Note: 'sticks' in either J and/or K will lose only 1 mark ALLOW 1 mark for: IF a structure is not given for \mathbf{J} NOTE: structures for \mathbf{J} and \mathbf{K} could be awarded from the equation, even if not labelled. ALLOW molecular formulae in equation i.e. $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}+[\mathrm{O}] \longrightarrow \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ DO NOT ALLOW equations that form a carboxylic acid

Question		Answer	Mark	Guidance		
(d)		$\begin{array}{l}\text { Labelled diagram showing at least one H-bond between } \\ \text { alcohol molecule and water } \checkmark \\ \text { e. }\end{array}$	$\mathbf{1}$	$\begin{array}{l}\text { IF diagram is not labelled ALLOW Hydrogen bonds / H } \\ \text { bonds from text }\end{array}$		
Diagram should include role of an O lone pair and dipole						
charges on each end of H bond.					$]$	IGNORE alcohol R group, even if wrong
:---						
ALLOW structural OR displayed OR skeletal formula OR						
mixture of the above						

Question		Answer	Mark	Guidance
3	(a)	There are 3 marking points required for 2 marks H_{2} and I_{2} on LHS AND 2HI on RHS AND correctly labelled Ea ΔH labelled with product below reactant AND arrow downwards \checkmark	2	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE state symbols. E_{a} : ALLOW (+)173 only as an alternative label for Ea ALLOW no arrowhead or arrowheads at both ends of activation energy line The E_{a} line must point to maximum (or near to the maximum) on the curve OR span approximately 80% of the distance between reactants and maximum regardless of position ALLOW AE or A_{E} for E_{a} $\Delta H:$ IF there is no ΔH labelled ALLOW -9 as an alternative label for ΔH. IF ΔH is labelled IGNORE any numerical value. DO NOT ALLOW - ΔH. ALLOW this arrow even if it has a small gap at the top and bottom i.e. does not quite reach reactant or product line
	(b)	(+)182	1	This is the ONLY acceptable answer

Question		Answer	Mark	Guidance
(c)		Look at answer if +63 kJ AWARD 2 marks If 63 (no sign) OR-63 (incorrect sign) AWARD 1 mark No of moles of $\mathrm{HI}=14$ moles Enthalpy Change $=+63 \mathrm{~kJ} \checkmark$	2	ALLOW one mark for +126 kJ Sign and value required. ALLOW ECF from incorrect number of moles of HI
(d)	(i)	Rate of the forward reaction is equal to the rate of the reverse reaction OR concentrations do not change \checkmark	1	ALLOW both reactions occur at same rate IGNORE conc. of reactants = conc. of products
	(ii)	More H_{2} and I_{2} OR less $\mathrm{HI} \checkmark$ (equilibrium position shifts) to the left AND (Forward) reaction is exothermic OR reverse reaction is endothermic OR in the endothermic direction \checkmark	2	Mark each point independently ALLOW more reactants OR less products Note: ALLOW suitable alternatives for to the left e.g. towards reactants OR towards $\mathrm{H}_{2} / \mathrm{I}_{2}$ OR in reverse direction OR favours the left. ALLOW gives out heat for exothermic ALLOW takes in heat for endothermic IGNORE responses in terms of rate
	(iii)	No effect AND Same number of (gaseous) moles on both sides	1	ALLOW same number of molecules on each side

Question			Answer	Mark	Guidance
4	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer $=-38.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 4 marks IF answer $=(+) 38.3\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ award 3 marks (incorrect sign) IF answer = -38,300 (kJ mol ${ }^{-1}$) award 3 marks (used J instead of kJ). Energy q calculated correctly $=1149.5(\mathrm{~J}) \vee$ OR $1.1495(\mathrm{~kJ}) \checkmark$ Moles Amount, n, of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ calculated correctly $=0.03(00) \checkmark$ Calculating ΔH correctly calculates $\Delta \mathrm{H}^{\text {in }} \mathrm{kJ} \mathrm{mol}^{-1}$ to 3 or more sig figs \checkmark Rounding and Sign calculated value of $\Delta \mathrm{H}$ rounded to 3 sig. fig. with minus sign \checkmark	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Note: $q=50.0 \times 4.18 \times 5.5$ ALLOW 1149.5 OR correctly rounded to 3 sig figs (J) IGNORE sign IGNORE working ALLOW 53.18 $\times 4.18 \times 5.5$ OR 1222.6082 OR 1220 OR correctly rounded to 3 or more sig figs in J or kJ IGNORE working IGNORE trailing zeros IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n Final answer must have correct sign and three sig figs ALLOW $-40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ if 53.18 used in calculation of q ALLOW $-40.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ if q is rounded to 1220 from 53.18 earlier
	(b)	(i)	(Enthalpy change) when one mole of a compound is formed from its elements $298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ AND $1 \mathrm{~atm} / 100 \mathrm{kPa} / 101 \mathrm{kPa} / 1 \mathrm{bar}$	3	ALLOW energy required OR energy released ALLOW one mole of substance OR one mole of product DO NOT ALLOW one mole of element IGNORE reference to concentration

Question	Answer	Mark	Guidance
(ii)	$1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{ClO}_{4}(\mathrm{~s})$ correct species correct state symbols and balancing \checkmark	2	Second mark can only be awarded if all species in the equation are correct DO NOT ALLOW multiples of this equation
(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = (+)90 award 3 marks IF answer $=-90$ award 2 marks IF answer $= \pm 270$ award 2 marks IF answer $= \pm 2947$ award 1 mark Processing $\Delta \mathbf{H}_{\mathrm{f}}$ values $\pm(3832-885) \pm 2947 \checkmark$ OR $\pm(3832-885)$ subtraction using ΔH reaction $\pm(2947-2677)= \pm 270$ Calculation of $\Delta \mathrm{H}$ formation NO $270 / 3=(+) 90$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC Note: $\pm 2947= \pm[-1676+(-704)+(6 x-242)]-(3 x-295)]$ ALLOW ECF for dividing by 3 from working that includes at least one ΔH_{f} and one balancing number and $\Delta H(-2677)$ for 1 mark
	Total	12	

	uesti	Answer	Marks	Guidance
5	(a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -4596, award 3 marks. IF answer $=+4596$ award $\mathbf{2}$ marks. $(-) 116 \checkmark$ $(-) 4480 \checkmark$ $-4596 \checkmark$	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 116 OR -4(+54) -5(-20) OR -216 + 100 ALLOW 4480 OR 4(-394) + 12(-242) OR -1576 - 2904 ALLOW ecf from $\Delta H_{\text {products }}-\Delta H_{\text {reactants }}$ ALLOW for 2 marks (+)4596 (cycle the wrong way round) OR -4364 ($\Delta H_{\text {reactants }}$ the incorrect sign) OR $(+) 4364$ ($\Delta H_{\text {products }}$ the incorrect sign) OR -752 (moles not used for products) OR -4514 (moles not used for reactants) ALLOW for 1 mark $(+) 752$ (moles not used for products and the cycle the wrong way round) OR (+)4514 (moles not used for reactants and the cycle the wrong way round) OR - 670 (moles not used for reactants and products) Note: There may be other possibilities

Question			Answer	Marks	Guidance
5	(b)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = +820, award 2 marks. IF answer $=-820$ or +1640 award 1 mark. amount of $\mathrm{N}_{2} \mathrm{O}=10(\mathrm{~mol}) \checkmark$ enthalpy change $=(+) 820 \checkmark$	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF, ie moles of $\mathrm{N}_{2} \mathrm{O} x$ enthalpy of formation
		(ii)	(+)82 \checkmark	1	
		(iii)	(+)283	1	
	(c)		$\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O} \text { AND O }+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3} \checkmark$ rate of ozone decomposition (almost) equals rate of ozone formation \checkmark	2	ALLOW $\mathrm{O}_{3} \rightleftharpoons \mathrm{O}_{2}+\mathrm{O}$ ALLOW $\mathrm{O}_{3} \rightarrow \mathrm{O}_{2}+\mathrm{O}$ is reversible ALLOW O $+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3}$ is reversible IGNORE dots IGNORE other equations involving ozone, eg $\mathrm{O}+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$ IGNORE comments about an equilibrium ALLOW rate of forward reaction is similar to the rate of the backward reaction if marking point 1 is awarded
	(d)		$\begin{aligned} & \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \checkmark \\ & \mathrm{NO}_{2}+\mathrm{O} \rightarrow \mathrm{NO}+\mathrm{O}_{2} \checkmark \end{aligned}$	2	ALLOW $\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}+2 \mathrm{O}_{2} \checkmark$ IGNORE dots IGNORE O $+\mathrm{O}_{3} \rightarrow 2 \mathrm{O}_{2}$ IGNORE $2 \mathrm{O}_{3} \rightarrow \mathrm{3O}_{2}$
			Total	11	

