	Question	Answer	Mark	Guidance
1	(a)	Method 1: 100% OR (only) one product OR no waste product OR addition (reaction) ✓	2	ALLOW co-product or by-product for waste product
		Method 2: < 100% AND two products OR (also) produces NaBr OR (There is a) waste product OR substitution (reaction) ✓		For '< 100%' ALLOW not 100% OR method 2 has a low(er) atom economy (compared to method 1) IGNORE produces Br ⁻ / Na ⁺ DO NOT ALLOW incorrect waste products e.g. Br ₂ , HBr, Br, Na
				ALLOW correctly calculated value of 42 or 41.8 up to calculator value of 41.83154324 correctly rounded for second mark
				DO NOT ALLOW incorrect values for the atom economy of method 2.
				ALLOW ONLY 1 mark for a statement that both methods have 100% atom economy.
	(b)	Acid ✓	1	ALLOW H^+ / named mineral acid / H_2SO_4 / H_3PO_4
				DO NOT ALLOW 'weak acid' e.g. ethanoic acid
				IGNORE pressure IGNORE temperature

Question		Answer	Mark	Guidance
(c)	(i)	(Average enthalpy change) when one mole of bonds \checkmark	2	IGNORE energy required OR energy released
		of (gaseous covalent) bonds is broken \checkmark		DO NOT ALLOW bonds formed
	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change = -42 (kJ mol ⁻¹) award 3 marks IF enthalpy change = +42 (kJ mol ⁻¹) award 2 marks	3	IF there is an alternative answer, check to see if there is any ECF credit possible. two common incorrect answers are: -970 (kJ mol ⁻¹) award 2 marks +970 (kJ mol ⁻¹) award 1 mark
		(Energy for bonds broken) = 5538 (kJ) \checkmark (Energy for bonds made) = 5580 (kJ) \checkmark		IGNORE signs ALLOW 1076 (bonds broken); 1118 (bonds made)
		$\Delta H_{\rm r} = -42 \; (\rm kJ \; mol^{-1}) \; \checkmark$		Correct sign required
				ALLOW ECF for bonds broken – bonds made IF at least one molar ratio is used e.g. 8 x C–H

Question	Answer	Mark	Guidance
(d)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF mass = 8.21 (g) award 3 marks	3	ALLOW ECF at each stage
	Actual $n(C_4H_9OH) \text{ produced} = \frac{3.552}{74} = 0.048 \text{ (mol)} \checkmark$		ALLOW expected mass $C_4H_9OH = 3.552 \times \frac{100}{80} = 4.44$ (g)
	theoretical $n(C_4H_9OH) = n(C_4H_9Br) = 0.048 \times \frac{100}{80} = 0.06 \text{ (mol)} \checkmark$		ALLOW Mass C ₄ H ₉ Br reacted = $0.048 \times 136.9 = 6.5712$ (g)
	Mass of C₄H ₉ Br = 0.06 × 136.9 = 8.21 (g) ✓ 3 SF required		ALLOW Mass of C ₄ H ₉ Br used = $6.5712 \times \frac{100}{80} = 8.21$ (g)
	Total	11	DO NOT ALLOW 8.22 (from use of 137 as M_r of C_4H_9Br)

Q	uestic	on	Answer	Mark	Guidance
2	(a)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta H_c = -2260 \text{ (kJ mol}^{-1}\text{)}$ award 4 marks IF $\Delta H_c = (+)2260 \text{ (kJ mol}^{-1}\text{)}$ award 3 marks (incorrect sign) IF $\Delta H_c = (\pm)2257(.2) \text{ (kJ mol}^{-1}\text{)}$ award 3 marks (not 3 sf)	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Moles Amount, <i>n</i> , C ₅ H ₁₂ O calculated correctly = 0.0175 (mol) \checkmark		
			Energy q calculated correctly = 39501 (J) OR 39.5(01) (kJ) \checkmark		Note: $q = 180 \times 4.18 \times 52.5$ ALLOW 39501 OR correctly rounded to 3 sig. fig. (J) IGNORE sign IGNORE working
			Calculating ΔH correctly calculates ΔH in kJ mol ⁻¹ to 3 or more sig figs \checkmark		Note: from 39501 J and 0.0175 mol Δ H = (-)2257.2 kJ mol ⁻¹ IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n
			Rounding and Sign calculated value of ΔH rounded to 3 sig. fig. with minus sign \checkmark		Final answer must have correct sign and three sig figs
		(ii)	ANY TWO FROM THE FOLLOWING VV	2	IGNORE heat loss (in question)
			incomplete combustion		ALLOW burns incompletely IGNORE incomplete reaction
			non-standard conditions		
			evaporation of alcohol/water		
			specific heat capacity of beaker/apparatus		

Question	Answer		Guidance
(b) (i)	$5C(s) + 6H_2(g) + \frac{1}{2}O_2(g) \longrightarrow C_5H_{12}O(I) \checkmark$	1	Balancing numbers AND species AND states all required DO NOT ALLOW multiples of this equation
	FIRST, CHECK THE ANSWER ON ANSWER LINE IF enthalpy change = -3320 (kJ mol ⁻¹) award 3 marks IF enthalpy change = (+)3320 (kJ mol ⁻¹) award 2 marks Working for CO ₂ AND H ₂ O seen anywhere $5 \times (-)394$ AND $6 \times (-)286$ OR (-)1970 AND $OR (-)3686 \checkmark (-)1716$ Calculates ΔH_c A further 2 marks for correct answer AND correct sign $= 5 \times -394 + 6 \times -286366$ $= -3320$ (kJ mol ⁻¹) \checkmark A further 1 mark for correct answer AND incorrect or no sign $= (+)3320$ (kJ mol ⁻¹) \checkmark $Cycle wrong way around: -366 - (5 \times -394 + 6 \times -286)$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IF there is an alternative answer, check to see if there is any ECF credit possible Common incorrect answers are shown below Award 2 marks for -1744 OR -1890 OR -314 OR -4052 Award 1 mark for 1744 OR 1890 OR 314 OR 4052

Question	Answer	Mark	Guidance
Question (c)	QWC: Evidence of the IR absorption at 1720 (cm ⁻¹) for presence of C=O/carbonyl group \checkmark QWC: No carboxylic acid OH absorption in IR OR no peak between 2500–3300 cm ⁻¹ AND so J is a secondary alcohol OR so K is a ketone \checkmark Alcohol J	Mark 6	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC LOOK ON THE SPECTRUM for labelled peaks which can be given credit BOTH IR at ~1720 (cm ⁻¹) AND C=O required ALLOW ranges from <i>Data Sheet</i> , i.e. C=O within range 1640–1750 cm ⁻¹ ; IGNORE any reference to C-O absorption For structures of J and K, ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above IGNORE any names given for J and K ALLOW 1 mark for the structure of an alcohol with the molecular formula C ₅ H ₁₂ O DO NOT ALLOW pentan-1-ol (<i>primary and unbranched</i>)
	Alcohol J		formula OR mixture of the above IGNORE any names given for J and K ALLOW 1 mark for the structure of an alcohol with the molecular formula $C_5H_{12}O$
	Equation Balanced equation for conversion of J to K \checkmark e. CH ₃ CHOHCH(CH ₃) ₂ + [O] \longrightarrow CH ₃ COCH(CH ₃) ₂ + H ₂ O		$\label{eq:ch_3} ^{I} \text{IF a structure is not given for J} \\ \text{NOTE: structures for J and K could be awarded from the equation, even if not labelled.} \\ \text{ALLOW molecular formulae in equation} \\ \text{i.e. } C_5H_{12}O + [O] \longrightarrow C_5H_{10}O + H_2O \\ \text{DO NOT ALLOW equations that form a carboxylic acid} \\ \end{array}$

Question	Answer	Mark	Guidance
(d)	Labelled diagram showing at least one H-bond between alcohol molecule and water ✓	1	IF diagram is not labelled ALLOW Hydrogen bonds / H bonds from text
	e. Hydrogen bond Н. Н.		Diagram should include role of an O lone pair and dipole charges on each end of H bond.
	δ-		IGNORE alcohol R group, even if wrong
	$\begin{array}{c c} H_{3}C & \hline C & \hline C & \hline O \\ \downarrow & \downarrow \\ CH_{3} & CH_{3} \end{array} \begin{pmatrix} \delta + \end{pmatrix} H & (\delta -)O \\ \hline H \end{array}$		ALLOW structural OR displayed OR skeletal formula OR mixture of the above
	Total	17	

Question	Answer	Mark	Guidance	
Question 3 (a)	Answer There are 3 marking points required for 2 marks Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image: transmit in the second structure Image:	Mark 2	GuidanceANNOTATE ANSWER WITH TICKS AND CROSSES ETCIGNORE state symbols. $E_a:$ ALLOW (+)173 only as an alternative label for EaALLOW no arrowhead or arrowheads at both ends ofactivation energy lineThe E_a line must point to maximum (or near to the maximum) on the curve OR span approximately 80% of the distance between reactants and maximum regardless of position ALLOW AE or A_E for E_a AH: IF there is no ΔH labelled ALLOW –9 as an alternative label for ΔH . IF ΔH is labelled IGNORE any numerical value.DO NOT ALLOW – Δ H. 	
	ΔH labelled with product below reactant AND arrow downwards \checkmark			
(b)	(+)182 ✓	1	This is the ONLY acceptable answer	

Quest	ion	Answer	Mark	Guidance
(C)		Look at answer if +63 kJ AWARD 2 marks If 63 (no sign) OR-63 (incorrect sign) AWARD 1 mark No of moles of HI = 14 moles ✓	2	ALLOW one mark for +126 kJ
		Enthalpy Change = +63 kJ ✓		Sign and value required. ALLOW ECF from incorrect number of moles of HI
(d)	(i)	Rate of the forward reaction is equal to the rate of the reverse reaction \checkmark	1	ALLOW both reactions occur at same rate
		OR		
		concentrations do not change√		IGNORE conc. of reactants = conc. of products
	(ii)		2	Mark each point independently
		More H_2 and I_2 OR less HI \checkmark		ALLOW more reactants OR less products
		(equilibrium position shifts) to the left AND (Forward) reaction is exothermic OR reverse reaction is endothermic OR in the endothermic direction√		Note: ALLOW suitable alternatives for to the left e.g. towards reactants OR towards H_2 / I_2 OR in reverse direction OR favours the left.
				ALLOW gives out heat for exothermic ALLOW takes in heat for endothermic
	(iii)	No effect	1	IGNORE responses in terms of rate
		AND Same number of (gaseous) moles on both sides ✓		ALLOW same number of molecules on each side

Question	Answer	Mark	Guidance
(e)	Look at answer if (+)298 AWARD 2 marks If answer is -298 AWARD 1 mark (incorrect sign)	2	
	2 x H-I bond enthalpy correctly calculated (436 +151-(-9) =) (+)596 ✓		
	H-I bond enthalpy correctly calculated		ALLOW 1 mark for (+)293.5 kJ mol ⁻¹ (bonds broken divided by 2)
	(Bond energy for H-I $(+)596/2$ =) (+)298 kJ mol ⁻¹ \checkmark		ALLOW 1 mark for (+)289 kJ mol ⁻¹ (incorrect expression i.e. [<u>436 +151+(-9)]</u>) 2
	Total	11	

Q	uesti	on	Answer	Mark	Guidance
4	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -38.3 (kJ mol ⁻¹) award 4 marks IF answer = (+)38.3 (kJ mol ⁻¹) award 3 marks (incorrect sign) IF answer = -38,300 (kJ mol ⁻¹) award 3 marks (used J instead of kJ).	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
			Energy <i>q</i> calculated correctly = $1149.5(J) \checkmark$ OR 1.1495 (kJ) \checkmark		Note: $q = 50.0 \times 4.18 \times 5.5$ ALLOW 1149.5 OR correctly rounded to 3 sig figs (J) IGNORE sign IGNORE working ALLOW 53.18 × 4.18 × 5.5 OR 1222.6082 OR 1220 OR correctly rounded to 3 or more sig figs in J or kJ
			Moles Amount, <i>n</i> , of Na ₂ CO ₃ calculated correctly= $0.03(00) \checkmark$		IGNORE working IGNORE trailing zeros
			Calculating ΔH correctly calculates ΔH in kJ mol ⁻¹ to 3 or more sig figs \checkmark		
			Rounding and Sign calculated value of ∆H rounded to 3 sig. fig. with minus		IGNORE sign at this intermediate stage ALLOW ECF from incorrect q and/or incorrect n
			sign√		Final answer must have correct sign and three sig figs
					ALLOW -40.8 kJ mol ⁻¹ if 53.18 used in calculation of q ALLOW -40.7 kJ mol ⁻¹ if q is rounded to 1220 from 53.18 earlier
	(b)	(i)	(Enthalpy change) when one mole of a compound ✓ is formed from its elements ✓	3	ALLOW energy required OR energy released ALLOW one mole of substance OR one mole of product DO NOT ALLOW one mole of element
			298 K / 25 °C AND 1 atm / 100 kPa / 101 kPa / 1 bar ✔		IGNORE reference to concentration

Question	Answer	Mark	Guidance
(ii)	$\frac{1}{2}N_2(g) + 2H_2(g) + \frac{1}{2}Cl_2(g) + 2O_2(g) \rightarrow NH_4ClO_4(s)$ correct species ✓ correct state symbols and balancing ✓	2	Second mark can only be awarded if all species in the equation are correct DO NOT ALLOW multiples of this equation
(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = (+)90 award 3 marks IF answer = -90 award 2 marks IF answer = ± 270 award 2 marks IF answer = ± 2947 award 1 mark Processing ΔH_f values	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC
	\pm (3832 - 885) ±2947 ✓ OR ± (3832 - 885) subtraction using ΔH reaction ±(2947-2677)= ±270 ✓		Note: ±2947 = ± [-1676 + (-704) + (6 x -242)] - (3 x -295)]
	Calculation of Δ H formation NO 270/3 = (+)90 \checkmark		ALLOW ECF for dividing by 3 from working that includes at least one ΔH_f and one balancing number and ΔH (-2677) for 1 mark
	Total	12	

Question	Answer	Marks	Guidance
5 (a)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -4596, award 3 marks . IF answer = +4596 award 2 marks .	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
	(−)116 ✓		ALLOW 116 OR -4(+54) -5(-20) OR -216 + 100
	(−)4480 ✓		ALLOW 4480 OR 4(-394) + 12(-242) OR -1576 - 2904
	-4596 ✓		ALLOW ecf from $\Delta H_{\text{products}} - \Delta H_{\text{reactants}}$
			ALLOW for 2 marks (+)4596 (cycle the wrong way round) OR -4364 ($\Delta H_{\text{reactants}}$ the incorrect sign) OR (+)4364 ($\Delta H_{\text{products}}$ the incorrect sign) OR -752 (moles not used for products) OR -4514 (moles not used for reactants)
			ALLOW for 1 mark (+)752 (moles not used for products and the cycle the wrong way round) OR (+)4514 (moles not used for reactants and the cycle the wrong way round) OR –670 (moles not used for reactants and products)
			Note: There may be other possibilities

Q	Question		Answer	Marks	Guidance
5	(b)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = +820, award 2 marks. IF answer = -820 or +1640 award 1 mark. amount of N ₂ O = 10 (mol) \checkmark	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			enthalpy change = (+)820 ✓		ALLOW ECF, ie moles of $N_2O x$ enthalpy of formation
		(ii)	(+)82 ✓	1	
		(iii)	(+)283 ✓	1	
	(c)		$O_3 \rightarrow O_2 + O$ AND $O + O_2 \rightarrow O_3 \checkmark$	2	ALLOW $O_3 \rightleftharpoons O_2 + O$ ALLOW $O_3 \Rightarrow O_2 + O$ is reversible ALLOW $O + O_2 \Rightarrow O_3$ is reversible IGNORE dots IGNORE other equations involving ozone, eg $O + O_3 \Rightarrow 2O_2$
			rate of ozone decomposition (almost) equals rate of ozone formation \checkmark		IGNORE comments about an equilibrium ALLOW rate of forward reaction is similar to the rate of the backward reaction if marking point 1 is awarded
	(d)		$NO + O_3 \rightarrow NO_2 + O_2 \checkmark$	2	
			$NO_2 + O \rightarrow NO + O_2 \checkmark$		ALLOW NO ₂ + O ₃ \rightarrow NO + 2O ₂ \checkmark IGNORE dots IGNORE O + O ₃ \rightarrow 2O ₂ IGNORE 2O ₃ \rightarrow 3O ₂
			Total	11	